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Abstract

Match outcome prediction in group comparison setting is
a challenging but important task. Existing works mainly
focus on learning individual effects or mining limited in-
teractions between teammates, which is not sufficient for
capturing complex interactions between teammates as well
as between opponents. Besides, the importance of in-
teracting with different characters is still largely under-
explored. To this end, we propose a novel Neural Attentional
Cooperation-competition model (NeuralAC), which incorpo-
rates weighted-cooperation effects (i.e., intra-team interac-
tions) and weighted-competition effects (i.e., inter-team in-
teractions) for predicting match outcomes. Specifically, we
first project individuals to latent vectors and learn complex
interactions through deep neural networks. Then, we design
two novel attention-based mechanisms to capture the impor-
tance of intra-team and inter-team interactions, which en-
hance NeuralAC with both accuracy and interpretability. Fur-
thermore, we demonstrate NeuralAC can generalize several
previous works. To evaluate the performances of NeuralAC,
we conduct extensive experiments on four E-sports datasets.
The experimental results clearly verify the effectiveness of
NeuralAC compared with several state-of-the-art methods.

Introduction
Group comparison, usually involving two teams competing
with each other (e.g., Figure 1), is ubiquitous in sports and
online games, such as football, Dota2, and League of Leg-
ends. In the last decade, the popularity of online competitive
games has exploded and there are more than 800 million on-
line game players 1. A large number of players create great
commercial value coupled with some technical challenges.
One of the crucial problems, i.e., match outcome prediction,
has attracted considerable research attention since it plays a
key role in creating fair matches for players and increasing
the teams’ probability of winning (Chen et al. 2018).

In the literature, many existing methods in group com-
parison (Herbrich, Minka, and Graepel 2007; Huang, Lin,
and Weng 2008) focus on learning individual effects from
outcomes of group comparisons. Despite the popularity of
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1https://leagueofbetting.com/number-of-online-gamers-to-hit-1-billion-by-
2024/,
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Figure 1: An example of group comparisons.

these methods, they omit interplays between players within
a team. In their assumption, team members are independent
of each other, that is, a team’s ability is modeled as the
sum of the team members’ score. To tackle this limitation,
neural network-based methods (Delalleau et al. 2012; Gong
et al. 2020) were proposed to capture the intra-team interac-
tions. However, they focus on obtaining the team represen-
tation by aggregating single team member’s representations,
which preserves little low-level information, and thus it is
hard to evaluate individuals’ contributions to the teamwork.
Meanwhile, factorization machines (FM) (Rendle 2010) was
adopted to group comparison (Li et al. 2018a), where the co-
operation effect (i.e., intra-team interaction) was modeled as
the inner product of two latent vectors. Though low-level
information was preserved, they can not model non-linear
interactions due to the limitation of FM method.

Indeed, both cooperation and competition are very com-
mon in human society (Bengtsson and Kock 1999; Bar-Yam
2003; Tauer and Harackiewicz 2004; MacRae 2018), which
can be highly complex. For example, as shown in Figure 1,
two teams fight each other in group comparison (e.g., battle-
field), which involves multiple interactions, including intra-
team interactions (e.g., the shield soldier A protects team-
mates, the healer cures teammates), and inter-team interac-
tions (e.g., the archer A shoots the swordsman B, the shield
soldier resists the swordsman’s attack). Everyone on the bat-
tle has different strengths and weaknesses, making them per-
form differently when against different opponents. Mean-
while, teammates could complement each other through co-



operation, which makes the group comparison highly intri-
cate. To make the prediction accurate, it’s necessary to in-
corporate comprehensive interactions. Nevertheless, how to
model such cooperation and competition effects simultane-
ously remains a challenge.

Another limitation of existing approaches is that they do
not consider the importance of interactions. Considering an
ancient war where two armies fight each other, soldiers focus
on finding opportunities to kill enemy generals. Meanwhile,
soldiers try to protect generals on their side. It’s clear that
generals play a key role in wars, and interacting with gener-
als has a larger influence on the outcome of the war. There-
fore, in this group comparison scenario, generals should re-
ceive more attention. In other words, interactions with differ-
ent characters have different attention scores, as they con-
tribute differently to the match outcome. Thus, modeling
inter-team and intra-team attention distributions is a nontriv-
ial task and yet remains a challenge.

To address the above challenges, in this paper, we propose
a novel Neural Attentional Cooperation-competition model
(NeuralAC), which incorporates weighted-cooperation ef-
fects and weighted-competition effects for predicting match
outcomes. Different from previous approaches, we choose
the element-wise product of two latent vectors as the input
of deep neural networks (DNNs) to get the corresponding
score, which greatly facilitates deep layers to learn meaning-
ful second-order interactions, while still preserving its inter-
pretability. First, by deploying DNNs on both intra-team and
inter-team interactions, we get pairwise cooperation scores
and pairwise competition scores. Then, we design two atten-
tion mechanisms to capture the importance of intra-team and
inter-team interactions, which enhance NeuralAC with both
accuracy and interpretability. Furthermore, we demonstrate
NeuralAC is general and expressive, which can generalize
several previous works. The main contributions of this work
are as follows:

• We consider both intra-team interactions and inter-team
interactions, and we propose to model comprehensive in-
teractions with neural networks for learning complex co-
operation and competition effects.

• We further propose two attention mechanisms to enhance
NeuralAC, which provide strong interpretability about the
importances of interactions.

• Extensive experiments on four real E-sports datasets show
the effectiveness of NeuralAC. The code and datasets are
avaliable at https://github.com/bigdata-ustc/NAC.

Related Work
Group Comparison
Many existing works (Herbrich, Minka, and Graepel 2007;
Huang, Lin, and Weng 2008) in this area focus on learn-
ing individual effects from group comparison. They assume
the player’s performance is independent of teammates, and
the ability of the team is represented as the summation of
the team members’ scores. This assumption may not hold
true in the real world, because some players may perform

well when they team-up together. To address this limita-
tion, some methods (DeLong et al. 2011; Semenov et al.
2016; Li et al. 2018a) are proposed to model the cooper-
ation effects in the team composition. For instance, Li et
al.(2018a) exploited factorization machine to model inter-
play between teammates. Their methods may not be ex-
pressive enough due to intra-team interactions is modeled
in a linear way. Deep learning is also adopted (Gong et al.
2020; Delalleau et al. 2012) to capture intra-team interac-
tions. Gong et al.(2020) also proposed a novel technique
of learning the representations of individuals from relation
graphs. However, these works mainly utilize DNNs for ag-
gregating players’ representations to obtain team representa-
tions. Despite non-linear interactions is modeled, their meth-
ods capture limited information at the low level. Besides,
due to the inherent traits of DNNs, these methods lack inter-
pretability and it’s hard to assess individuals’ contributions
to team works.

The existing works either focus on learning individual ef-
fects or modeling limited cooperation effects. Besides, com-
petition effects and the importance of interactions are still
largely under-explored. Meanwhile, some methods (Delal-
leau et al. 2012; Minka, Cleven, and Zaykov 2018; Gong
et al. 2020) utilized in-game features to get more accurate
predictions. However, those features are usually designed
by experts in the domain, hence case-specific. We focus on
a more general task with no domain knowledge required.
Therefore, we don’t utilize any in-game features.

Cooperation and Competition
Cooperation and competition are important factors in other
fields, which are widely studied. For example, Dai et
al. (2020) predicted cooperation and competition relation-
ships among companies in a company relation network. Us-
mani et al. (2020) analyzed the competitiveness of commer-
cial products in the market. Some works (Lowe et al. 2017;
Wray, Kumar, and Zilberstein 2018) explored to model
decisions making process in the multi-agent cooperative-
competitive environment. Although cooperation and com-
petition have been studied in other fields, very little work in
group comparison has fully explored the impact of coopera-
tion and competition effects.

NeuralAC Model
In this section, we first formally introduce match outcome
prediction task. Then, we give an overview of NeuralAC.
After that, we details basic NeuralAC and attention mecha-
nisms. Finally, we demonstrate the generality of NeuralAC.

Problem Definition
Suppose there are n individuals {1, 2, ..., n}, M observable
matches. Each match involves two teams TA and TB , each of
them is a subset of {1, 2, ..., n}, and the match outcomes of
the M matches is denoted as {y1, y2, ..., yM}. In this paper,
we focus on the problem of binary match outcome predic-
tion, each match outcome is either win or lose. We assume
that there is no draw. Let ym = 1 if TA beat TB in a match
m ∈ [1,M ], otherwise ym = 0. Given a match between TA
and TB , our goal is to predict the match outcome ŷ ∈ [0, 1].
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Figure 2: NeauralAC model architecture. (a) shows the overview of the model; (b) is cooperation effects part; (c) is competition
effects part. Note that, for clarity purpose, we omit the individual effects part in this figure.

Model Overview
In this paper, we focus on group comparison. We assume
each team has a score indicating team’s ability. Inspired by
Blade-Chest (Chen and Joachims 2016), we formulate the
probability of team TA defeating team TB as:

P (A beats B) =
exp(SA)

exp(SA) + exp(SB)
,

=
1

1 + exp(−(SA − SB))
,

= σ(∆(A,B)),

(1)

where SA is TA’s score that represents the overall ability
of the team, σ is the sigmoid function. ∆(A,B) denotes
the edge that TA have when match up against TB . When
∆(A,B)→ 0, both teams have the equal odds to win. When
∆(A,B) → +∞, P (A beats B) → 1, B almost has no
chance to defeat A, and vice versa.

As mentioned above, there are multiple complex interac-
tions in group comparisons (e.g., cooperation between team-
mates and competition between opponents). Generally, if
team members get high individual ability or two members
cooperate well, the overall ability of the team can be im-
proved. Besides, if a player in TA has more advantages when
competing with his opponents, then the overall ability of TA
can be further improved. Therefore, in NeuralAC, the overall
ability of the team consists of three parts: individual effects,
cooperation effects and competition effects. Take TA versus
TB as an example, we formulate TA’s score as:

SA =
∑
i∈TA

wi + Fcoop(TA) + Fcomp(TA, TB), (2)

where wi indicates i’s individual ability, which is model pa-
rameter. The first term of SA models individual effects. The
second term Fcoop(TA) and the third term Fcomp(TA, TB)
models cooperation effects and competition effects, respec-
tively. Figure 2 shows the framework and two main compo-
nents of NeuralAC.

Basic NeuralAC
In this subsection, we illustrate the detail of NeuralAC with-
out two attention mechanisms (e.g., cooperation effects part,
competition effects part).

Cooperation Effects. Everyone has different character-
istics of cooperation. When working with different team-
mates, the cooperation effect usually differs. Inspired by (Li
et al. 2018a; Gong et al. 2020), in NeuralAC, we assume
each individual i has an embedding vector vi ∈ Rk, namely
cooperation vector, representing his cooperation character-
istics. The cooperation effects Fcoop(TA) is formulated as:

Fcoop(TA) =
∑
i∈TA

∑
j∈TA,i6=j

f1(vi � vj), (3)

where � denotes the element-wise product, vi and vj are
learnable parameters, f1 refers to the MLP with non-linear
activation function, which are capable of learning higher-
order and non-linear interactions between teammtes. The
output of f1(vi � vj) is a scalar value, which is the coop-
eration score between i and j.

Competition Effects. Each player has different strengths
and weaknesses, making them perform differently when
against different opponents. Inspired by Blade-Chest, in
NeuralAC, each individual i has two distinctive embedding
vectors pi ∈ Rk, ci ∈ Rk, namely strength vector and weak-
ness vector, respectively. To simplify the setting, we assume
vi, pi, ci share the same size k. Then, the competition effects
Fcomp(TA, TB) is formulated as:

Fcomp(TA, TB) =
∑
i∈TA

∑
j∈TB

f2(pi � cj), (4)

where � denotes the element-wise product, pj and ci are
learnable parameters, f2 refers to a MLP with non-linear
activation function, which can model non-linear interac-
tions between opponents. The output of f2(pi � cj) is a



scalar value, indicating a competition score when i compete
against j. To summarize, we give the formulation of SA as:

SA =
∑
i∈TA

wi +
∑
i∈TA

∑
j∈TA,i6=j

f1(vi � vj)

+
∑
i∈TA

∑
j∈TB

f2(pi � cj).
(5)

DNNs Components. In our setting, f1 and f2 share the
same network structure. Here, we elaborate the design of f2.
To simplify the description, we denote pi� cj as x, and then
feed x to the MLP. Similar to NFM (He and Chua 2017), the
process can be formulated as:

z1 = σ(W1x + b1),

z2 = σ(W2z1 + b2),

· · · · · ·
zL = σ(WLzL−1 + bL),

(6)

where L indicates the number of hidden layers, WL, bL de-
note the weight matrix and bias for the L-th layer. σ(·) is
ReLU activation function.

To ensure the interpretability of NeuralAC (e.g. it does
not make sense when cooperation and competition scores
are negative), we set the activation function of the output
layer to be ReLU .:

Oij = ReLU(WozL + bo), (7)

where Oij is the competition score when i against j.

NeuralAC
In this subsection, we show how to enhance basic Neu-
ralAC with two attention mechanisms. Attention mecha-
nisms have been widely used in many tasks, such as com-
puter vision (Chen et al. 2017; Liu et al. 2018), natural lan-
guage processing (Zhang et al. 2019), and recommendation
system (Xiao et al. 2017; Li et al. 2018b). In a team compe-
tition case, we often pay more attention to the key person in
our team. Similarly, we usually focus on the key person in
the opponent team and look for a chance to defeat him. Since
cooperating or competing with the key person has a greater
influence on the match outcome, not all interactions should
share the same weight as they contribute differently to the
final game outcome. Motivated by this intuition, we propose
to deploy the attention modules on cooperation effects and
competition effects as:

SA =
∑
i∈TA

wi +
∑
i∈TA

∑
j∈TA,j 6=i

acoop
ij f1(vi � vj)

+
∑
i∈TA

∑
j∈TB

acomp
ij f2(pi � cj),

(8)

where acoop
ij , acomp

ij is intra-team and inter-team attention
score respectively, which can be interpreted as the impor-
tance of the interaction in contributing to the game outcome.

Attention Components. To make attention modules gen-
eralized to unseen pairs and asymmetry (e.g., i’s attention to
j is usually different from j’s attention to i), we formulate
them as follows:

rcoop
ij = vTi Wcoopvj ,

acoop
ij =

exp(rcoop
ij )∑

j∈TA,j 6=i exp(rcoop
ij )

,
(9)

rcomp
ij = pT

i Wcompcj ,

acomp
ij =

exp(rcomp
ij )∑

j∈TB
exp(rcomp

ij )
,

(10)

where Wcoop ∈ Rk×k, Wcomp ∈ Rk×k are learnable model
parameters , rcoop

ij and rcomp
ij denote attention values. The in-

puts to rcoop
ij are two teammates’ cooperation vectors (e.g.,

vi and vj), and the inputs to rcomp
ij are one’s strength vector

(e.g., pi) and his opponent’s weakness vector (e.g., ci). The
higher the rcoop

ij , the more attention j will receive from his
teammate i. The higher the rcomp

ij , the more attention j will
receive from his opponent i.

Training Strategy
Given M observed matches, let yi denote the i-th
match outcome, ŷi denote corresponding prediction (i.e.,
P (A beats B)). The loss function is cross entropy between
model output ŷ and true label y:

L = −
M∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)). (11)

In this way, we can learn NeuralAC by directly minimiz-
ing the loss function L.

Generality of NeuralAC
In this subsection, we demonstrate the generality of Neu-
ralAC, and pervious works can be seen as special cases of
NeuralAC. To be specific, we first simplify NeuralAC by
removing attention modules and non-linear activation func-
tion, then set hidden layer number to 0. In this way, TA’s
score is formulated as:

SA =
∑
i∈TA

wi +
∑
i∈TA

∑
j∈TA,i6=j

hT
1 (vi � vj)

+
∑
i∈TA

∑
j∈TB

hT
2 (pi � cj),

(12)

where vector h1 ∈ Rk, h2 ∈ Rk denotes neuron weights of
the output laryer.

Generalized Bradly-Terry. Generalized BT (Huang,
Lin, and Weng 2008) consider individual effect, while ne-
glecting cooperation effect and competition effect. By fixing
h1 and h2 to constant zero vectors, we can get the General-
ized BT model, where SA is defined as:

SA =
∑
i∈TA

wi. (13)



Factorization Machine. FM (Li et al. 2018a) models
pairwise intra-team interactions by inner product of two la-
tent vectors, the team score can be represented as:

SA =
∑
i∈TA

wi +
∑
i∈TA

∑
j∈TA,i6=j

vTi vj . (14)

By forcing h2 to be a constant zero vector, and fixing h1 to
be constant one vector, we can get the FM model exactly.

Blade-Chest-Inner. Blade-Chest (Chen and Joachims
2016) model each player i with an absolute ability value wi,
strength vector pi, and weakness vector ci. Blade-Chest con-
sider interaction between a opponent, but it is designed for
1v1 circumstance. In Blade-Chest-Inner model, take player
a versus player b as an example, a’s score is modeled as:

Sa = wa + pT
a cb. (15)

By setting the team size of both sides to 1 and let h2 to be
constant one vector, our model can be reduced to the follow-
ing formula, which is the same with Blade-Chest model:

SA =
∑
i∈{a}

wi + 0 +
∑
i∈{a}

∑
j∈{b}

pT
i cj . (16)

Experiments
Dataset Description
Online games are an ideal testbed and can provide a lot of
group comparison data. We use four E-sports datasets to
evaluate the utility of our model. The basic statistics of all
the datasets are summarized in Table 1.

Dota2 is a famous Multiplayer Online Battle Arena
(MOBA) game. In each game, two teams fight each other
on the map. Each player controls a different virtual char-
acter named hero throughout the whole game. We down-
loaded ranked matches from yasp.co2 and Varena3, which
were played in the years of 2015 and 2018 respectively.

League of Legends(LOL) shares a similar game pattern
as Dota2. We crawled the recent matches from RiotGame4.
For LOL dataset, we investigate a special game mode, where
players are forced to fight on one single line, instead of three
lines in Dota2.

We filter out matches that played less than 15 minutes for
Dota2 and 8 minutes for LoL. Due to the existence of match-
making systems, players on both sides have relatively close
skills. Therefore, we treat each hero as an individual.

Teamfight Tactics(TFT) is a round-based strategy game
that players compete against seven other opponents by con-
structing and optimizing team compositions to be the last
one standing. A Team is composed of heroes selected by the
player, each hero has different synergies and equipment. Dif-
ferent from MOBA games, players do not have control of the
deployed heroes during the combat time. In each round, the
player will fight against a random opponents. We crawl the
ranked TFT match records via RiotGame API. We sample
group comparisons according to players’ last survival round.

2https://github.com/odota/core/wiki/JSON-Data-Dump
3https://open.varena.com/documentation/dota2/
4https://developer.riotgames.com/apis#match-v4

Dataset Matches #Heroes Mode

Dota2015 800,000 110 5v5
Dota2018 580,270 116 5v5

LoL 754,700 148 5v5
TFT 800,000 188 N1vN2

Table 1: Statistics of the datasets.

Baseline Methods
• Logistic Regression (LR) (Ng and Jordan 2002): A linear

classifier with L2 regularization. We use the same data
input format as Semenov et al. (2016).

• Generalized Bradly-Terry (BT) (Huang, Lin, and Weng
2008): Another linear model, which consider only indi-
vidual effects.

• TrueSkill (Herbrich, Minka, and Graepel 2007): An algo-
rithm based on probability graph, which is widely used in
online games for matchmaking.

• LightGBM (LGB) (Ke et al. 2017) : A highly efficient
implementation of GBDT, which achieve state of the art
performance in many data science competitions.

• HOI (Li et al. 2018a): A factorization machines
(FM) (Rendle 2010) based model that takes pair-wise in-
teractions of teammates into account.

• OptMatch (Gong et al. 2020): A method based on multi-
head self-attention (Vaswani et al. 2017), where each hero
has own embeddings and feed into the module to get the
team representation for predicting match outcomes. Since
we don’t utilize any in-game feature except hero ids, we
remove the feature module of OptMatch. Besides, Opt-
Match assumes teams on two sides have the same size,
therefore, we don’t apply OptMatch on TFT dataset.

Model Variants
To examine the effectiveness of each component in Neu-
ralAC, we conducted a series of ablation experiments.
• no-coop: A variant of NeuralAC that does not model the

cooperation effect, i.e., remove f1.
• no-comp: A variant of NeuralAC that does not model the

competition effect, i.e., remove f2.
• no-att: A variant of NeuralAC that all attention modules

are removed, i.e., remove acoop
ij and acomp

ij .

Experimental Setup
For NeuralAC model, the dimension of hidden layers is set
to 50, and ReLu is used as activation function. We initialize
the parameter with Kaiming initialization (He et al. 2015).
Besides, Dropout (Srivastava et al. 2014) technique is also
applied with the drop probability set to 0.2.

For every dataset, we randomly divided samples into
80% for training, 10% for validating, and 10% for test-
ing. We choose Area Under ROC (AUC) (Bradley 1997)
and Accuracy (Acc) as the evaluation metrics. For HOI and



Model
Dota2015 Dota2018 LoL TFT

AUC Acc AUC Acc AUC Acc AUC Acc

BT 0.6330 0.5955 0.6116 0.5784 0.6347 0.5969 0.7634 0.6935
LR 0.6330 0.5956 0.6116 0.5784 0.6347 0.5969 0.7634 0.6935

TrueSkill 0.6110 0.5789 0.5805 0.5577 0.6129 0.5811 0.7506 0.6832
LGB 0.6445 0.6035 0.6224 0.5929 0.6411 0.6028 0.8015∗ 0.7234∗

HOI 0.6373 0.5989 0.6144 0.5821 0.6337 0.5965 0.7728 0.6989
OptMatch 0.6325 0.5961 0.6173 0.5851 0.6523 0.6101 - -

NeuralAC 0.6615 0.6156 0.6411 0.6012 0.6663 0.6209 0.8082 0.7279

no-coop 0.6525 0.6086 0.6333 0.5951 0.6531 0.6110 0.7992 0.7215
no-comp 0.6444 0.6051 0.6203 0.5841 0.6546∗ 0.6115∗ 0.7740 0.7000

no-att 0.6606∗ 0.6150∗ 0.6396∗ 0.5991∗ 0.6480 0.6070 0.7780 0.7037

Table 2: Experimental results on match outcome prediction. (The second best methods are denoted with *)
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(b) Competition scores.
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(c) Cooperation attention values.
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(d) Competition attention values.

Figure 3: Note that the cooperation scores matrix is symmetry, the other three matrices are asymmetric since the impact of hero
i on hero j is usually different from the impact of hero j on hero i. The diagonal is left blank because one cannot interact with
himself. Take subfigure (b) for illustration, the value in i-th row and j-th column, denote the competition score when hero in
i-th row competes against hero in j-th column.

NeuralAC, we set embedding size k to 20. As for Opt-
Match, the embedding size was searched in [20, 40, 80, 160,
320] to get the best performance on validating. We choose
Adam (Kingma and Ba 2014) as the optimizer, with 0.001
of learning rate and 0.0001 of weight decay coefficient, for
HOI, OptMatch and NeuralAC. Besides, the batch size is set
to 256 for HOI, OptMatch and NeuralAC on all datasets.

LR, TrueSkill and LGB are implemented by open source
packages sklearn, trueskill, LightGBM, respectively. HOI,
NeuralAC and OptMatch are implemented by PyTorch pack-
age (Paszke et al. 2019). All experiments are implemented
by Python and are trained on a Linux server with Intel Xeon
E5-2650 CPUs and a TITAN Xp GPU.

Experimental Results
Table 2 shows the experimental results of all methods on
match outcome prediction task. First, NeuralAC outper-
forms all the other baselines on all datasets, indicating the ef-
fectiveness of our model. Second, by incorporating coopera-

tion effects, HOI performs better than BT, LR and Trueskill
on most datasets. This proves the existence of the cooper-
ative effect in group comparison. Third, no-comp performs
better than HOI, which indicates that the inner product may
fail to model complex intra-team interactions. Fourth, no-
comp outperforms OptMatch in 2 out of 3 datasets. One
possible explanation may be that despite OptMatch mod-
eling higher-order interactions, it preserves little low-level
information. Fifth, compare NeuralAC with no-comp, we
found that the performance of NeuralAC drops significantly,
which proves competition effects are important factors in
group comparisons. Finally, compared with other variants,
NeuralAC performs better, which suggests that incorporat-
ing comprehensive interactions, and attention mechanisms
improves the accuracy of prediction.

Model Interpretability
To evaluate the interpretability of NeuralAC (i.e., whether
the cooperation effects, competition effects and attention



indivi. effects coop. effects comp. effects

TA 0.5284 1.9886 3.5600 (TA → TB)

TB 0.5494 2.0271 2.2458 (TB → TA)

Table 3: Effects of two teams.

TA’s competition scores TB’s competition scores

TA TB value TB TA value
Spectre Riki 1.5 Phoenix Spectre 0.82
Spectre Luna 1.1 Riki Spectre 0.75
Pudge Pugna 1.1 Pugna Spectre 0.64

... ...
Spectre Phoenix 0.26 Luna Zeus 0

Zeus Pugna 0.2 Skywrath Pudge 0

Table 4: Competition scores of two teams.

distribution are reasonable), we choose the most 10 popular
heroes in Dota2018, then calculate their pair-wise cooper-
ation scores, competition scores, and attention values sepa-
rately. The corresponding results are shown in Figure 3(a),
Figure 3(b), Figure 3(c), Figure 3(d).

Cooperation Score. Intuitively, if two individuals i and j
perform better when they play together, they are more likely
to get a higher cooperation score. Similarly, if i suppress
j more when j is i’s opponent, i is more likely to get a
higher competition score over j. As shown in Figure 3(a),
Jugg or FV get a high score when they play with Lion, Ru-
bick, or Shaman. One likely explanation may be that both
Jugg and FV are melee Damage Per Second (DPS) heroes,
which means they can deal huge physical damage to an en-
emy in a short time, but they have a small attack range; Lion,
Rubick, and Shaman are ranged wizards with stun spells,
which means they can help Jugg or FV get close to their
enemy, hence improve attack efficiency. Two different types
of heroes can complement each other. Therefore, Jugg co-
operates well with Rubick or Shaman. Furthermore, we can
observe that the cooperation score between Jugg and FV is
extremely low, which validates our assumption from another
aspect because heroes of the same type cooperate poorly.

Competition Score. In the first columns of Figure 3(b),
we can observe that the numbers in the column are relatively
low. We can infer Pudge almost immune from SF, Zeus, In-
voker, Lion because all of them rely heavily on magic spell
while Pudge has high magic resistance.

Attention Distribution. As shown in Figure 3(c) and Fig-
ure 3(d), FV and Jugg get relatively high attention values in
two figures, because they are key characters in the game.
One strange finding is Invoker get low score in Figure 3(c),
but high score in Figure 3(d). A possible explanation for this
abnormality is Invoker has 10 unique spells, which make
him one of the most powerful heroes in dota2. Unlike FV or
Jugg, even without the assists of teammates, Invoker could
still play an important role in the battle. In the first column
of Figure 3(d), Pudge get lowest attention values from en-
emy. One explanation might be Pudge is one of the strongest

Dota2018Dota2018

LoL LoL

NeuralAC OptMatch HOI

Figure 4: Test Acc and AUC w.r.t. embedding size k.

heroes with high health and magic resistance, which makes
him the last person his opponent wants to encounter.

Through the above analysis, we can infer that NeuralAC
indeed learned meaningful and reasonable relationships be-
tween heroes. It is worth to point out that our proposed
model is capable to learn such complex relationships merely
based on game outcomes, with no prior knowledge (e.g., at-
tack range) of heroes5 is provided to NeuralAC.

Case Study
Here we present a match record on dataset Dota2018, where
TA beats TB in the end. As shown in Table 3, TA and TB
get quite close individual effects and cooperation effects.
However, the difference between their competition effects
is huge. In Table 4, We detail the three highest competition
scores and the two lowest competition scores for two teams.
Overall, we can observe heroes in TA have more edges when
competing against heroes in TB . If a method fail to model
competition effects, then it may give a wrong prediction.

Hyperparameters Effects
Since HOI, OptMatch, and NeuralAC have embedding lay-
ers, we conduct a group of experiments on Dota2018 and
LoL to explore the impact of the embedding size, where
other parameters (e.g., batch size, learning rate) are kept the
same. As shown in Figure 4, it is obvious that our model
consistently performs the best under all parameter settings.
However, the model does not learn better when embedding
size increases.

Conclusions
In this paper, we proposed NeuralAC for match outcomes
prediction. By modeling both attentional cooperation effects

5To know more about heroes in Dota2, you can refer to the following websites:
https://dota2.gamepedia.com/Heroes, https://www.dota2.com/heroes/?l=english



and attentional competition effects with deep neural net-
works, NeuralAC outperforms the state-of-the-art methods.
Extensive experimental results on four datasets showed the
effectiveness of our models with both accuracy and inter-
pretability. Besides, we demonstrated that NeuralAC could
be seen as the generalization of several previous models. Fi-
nally, NeuralAC can provide meaningful and reasonable re-
lationships between individuals, which can be further used
in team formations (Wright and Vorobeychik 2015), online
game hero recommendation, and user performance predic-
tion (Huang et al. 2020; Wu et al. 2020; Wang et al. 2020).
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